

HPC Activities at University Politehnica of Bucharest

Emil Sluşanschi, Nicolae Ţăpuş, Alexandru Herişanu, Alexandru Olteanu, Răzvan Dobre

Computer Science & Engineering Department

November 29-30 2011, Bucharest, Romania RO-LCG 2011 Workshop

Agenda – Computing Infrastructure

- Hardware
- NCIT Project Domains
- UPB user domain
- Software

The Storage & I/O Department – Connecting Clusters

Current Infrastructure

- Magic word: diversity
 - 32 dual quad-core Xeon + 20 dual hex-core Opteron
 - + 4 dual PowerXCell 8i + 50 P4 HT + 32 dual Xeon
 - = 642 cores

(total: 918 cores / HPC 642 – Virtualization 232)

- GbE/Infiniband Interconnect
- Total storage of 36TB

+ other "friendly clusters"

Our Network

- Full IPv6 stack (routed, not tunneled)
- Infiniband
- Dual Gigabit

Lots of experimenting with network
Optimization /
monitoring Limbo

- Jumbo frames
- Network stack configuration, bonding

HPL Performance

- 1TFlops sustained for 230.000 dense linear systems
- Current work:
 - Use IBM XL C/C++ Compiler Suite
 - Use the Intel Cluster
 Toolkit Compiler Suite
 - Use optimized Intel MKL,
 MASS libraries
 - Optimize for LS22Infiniband
 - Use OpenCL version of LINPACK for GP-GPU computing

NCIT Domains of Interest

Our user domain

Hardware needs people to function

MPI OpenMP

first sem.

Cell Computing

second sem.

3rd year of study

HPC Summer School

Profiling / Tuning

Σ

4th year of study

Diploma

Master

Grid / HPC

2 years

Research Projects / PhD

Software

- Sun Grid Engine 6.2u6 / cfEngine software provisioning
- Compilers
 - Ibm XL, Intel C/Fortran, PGI, SunStudio, gcc
- Debuggers
 - TotalView
- Profilers
 - VTune, Sun Studio Analyser
- Libraries
 - Intel MKL, NAG, Blas
- Tools
 - Code Saturne, Charm++, Gaussian09, OpenFoam,
 Paraview etc.

The Storage & I/O Department

- How do you store your data?
 - Disk, NFS, Lustre
- Transport?

TCP/IP, Infiniband

Large storage requires operational knowledge

Connecting Clusters

- Hardware is everywhere
- How do you connect multiple clusters together?

users, storage, cpu, software

NCIT Cluster – ICF-HPC (Currently)

We have to write the Cookbook for that

QS22 chassis, Myrinet, Infiniband, HS22, LS21, BlueGene/P (UVT)?

Infrastructure Outlook

- GPGPU Programming in curricula probably in 1-2 years
- At least 4 NVidia Fermi Engines in IBM Blade Servers
- RDMA over Infiniband GPU Memory to GPU Memory
- OpenCL & CUDA Programming
- Everything is a Object VM

Agenda – HPC Applications

- 3D Romania online high-resolution model; element and feature extraction – EagleEye (Image processing)
- Modeling and Simulation of Aerodynamic Phenomena: INCAS (Aerospace Research)

- Weather Prediction Models: COSMO, HRM, WRF ANM (Meteorology)
- Atomic Scale Simulation in Material Science ICF (Molecular Dynamics and Physical Chemistry)
- N-Body & SPH Simulations (Astrophysics)
- Numerical Simulation of Earthquakes in the Vrancea Region – INFP/NIPNE (Earth Sciences)
- HPC /Multicore Training @ cs.pub.ro

Element Detection & Feature Extraction

Median Filter

Grayscale

Canny Edge Detector

From Images to Features

Original

Hough Peaks over image edges

Grayscale

Mark road segment edges

Image Detection (Sobel)

Final identified feature (road)

Hough Accumulator

Modeling and Simulation of Aerodynamic Phenomena

Preprocessing & Grid generation – Metis/ParaMetis

- Open-Source complex Navier-Stokes CFD codes
 - Cluster porting of existing CFD Codes: Code Saturne & OpenFOAM
 - Tuning & improving serial performance
 - Improve MPI/OpenMP/GPGPU scaling
- Postprocessing ParaView & Salome

Weather Prediction Models

HRM & COSMO Scaling

Processor Architecture Scaling

Intel Xeon Quad-Core vs AMD Opteron Six-Core

Ongoing tests on Intel Nehalems & planned tests on Intel Sandy Bridge

1 micron

Atomic Scale Simulation in Material Science

- Paramagnetic materials simulation
 - OpenMP CS parallelization: Speedup 8.3x on 8 procs superlinear due to improved cache performance
- **GAMESS**
 - MPI original program Speedup 6.4x on 8 cores
- MOPAC
 - Propose a parallelization scheme for modern multi-core architectures
- NAMD / GROMACS / Gaussian / **CPMD**
 - Scale to production systems

10nm

1nm

Atoms/ Molecules		Nanoscale Particles		Condensed Matter		
	1	125	70,000	6×10 ⁶	$\infty N^o Atoms$	
•		1	10	100 ∞	Diameter (nm)	
	Quantum Chemistry		?		Solid State Physics	

Nanotubes and systems of nanotubes

- Hysteresis phenomenon 1 nanotube
 - Serial run: 2165s
 - Optimized serial run: 9s
 - Optimized parallel* run: 3.8s
 - Total Speedup: 569x
- Systems of nanotubes
 - 100x100 tubes
 - Serial run: 350s
 - Optimized serial run: 17s
 - Optimized parallel* run: 10s
 - Total Speedup: 35x
- Intel Parallel Studio analysis proved essential!

NAMD & VMD Using Charm++

NAMD = **NotAnother Molecular Dynamics VMD** = **V**isual **M**olecular **B**ynamics

VMD 1.8.2 OpenGL Display

· Load in background 0 = vmd console Features: STENCIL RN MTX TCM

Textures: 2-D (2048x2048), 3-D (0x0x0), Multitexture (8)

vmd > Info) Using plugin xyz for structure file his.xyz Info) Using plugin xyz for coordinates from file his.xyz Info) Determining bond structure from distance search ...

Fragments: 3 Protein: 0 Nucleic: 0

Info) Finished with coordinate file his.xuz.

Info) Analyzing structure ... Atoms: 300

Residues: 3

Waters: 0 Segments: 1

Info)

Info)

time (sec)

mem (MB)

Total Speedup: 37.5x / 4x cores

Astrophysics

Numerical Simulations of Earthquakes in the Vrancea Region

1/1974 - 6/1974

HPC Related Lectures & Training @ CS

- Grid/HPC Initiative Summer school:
 - First GridInit was in 2004
 - Usually debated grid middleware tasks
 - Fom 2008 the main focus is on developing HPC Applications using architectures with multicore processors
- Undergraduate Lectures:
 - Parallel Computing Algorithms and Data Structures, (Parallel) Computer Systems Architecture, Distributed Programming Languages
- Graduate Lectures:
 - Distributed Systems, Cluster & Grid Computing, High Performance Computing – Numerical Methods and Programming Techniques, Distributed Algorithms
- HPC Industry Training @cs.pub.ro:
 - Intel Multi-core Programming for Academia 2007
 - IBM Basic and Advanced Cell Programming 2008
 - IBM BlueGene Programming 2009
 - Intel Parallelism Faculty 2009
 - NVidia Cuda Programming 2012

Acknowledgements

- ICF: Viorel Chihaia
- INCAS: Victor Pricop, Marius Cojocaru, Claudiu Vadean
- IFIN: Octavian Carbunar
- INFP: Mircea Radulian, Constatin Ionescu
- UBUC: Marian Ivan
- ANM: Victor Pescaru, Rodica Dumitrache, Cosmin Barbu
- AIRA: Marian Suran, Dumitru Pricopi
- CS@UPB: Ovidiu Hupca, Iulian Milas, Andrei Pasatoiu, Maria, Nadejde, Cosmin Constantin, Marius Poke, Andreea Sandu, Vlad Spoiala, Diana Gudu, Aurora Mirea, Cristina Ilie, Victor Spiridon

Thank you for your attention

Q&A

cluster.grid.pub.ro cs.pub.ro

